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Abstract: The overall objective of the US Air Force Research Laboratory (AFRL) Rapid Propellant 
Loading (RPL) Program is to develop a launch vehicle, payload and ground support equipment that can 
support a rapid propellant load and launch within one hour. NASA Kennedy Space Center (KSC) has been 
funded by AFRL to develop hardware and software to demonstrate this capability. The key features of the 
software would be the ability to recognize and adapt to failures in the physical hardware components, 
advise operators of equipment faults and workarounds, and put the system in a safe configuration if unable 
to fly.  In December 2008 NASA KSC and NASA Ames Research Center (ARC) demonstrated model-
based simulation and diagnosis capabilities for a scaled-down configuration of the RPL hardware. In this 
paper we present a description of the model-based technologies that were included as part of this 
demonstration and the results that were achieved. In continuation of this work we are currently testing the 
technologies on a simulation of the complete RPL system. Later in the year, when the RPL hardware is 
ready, we will be integrating these technologies with the real-time operation of the system to provide live 
state estimates. In future years we will be developing the capability to recover from faulty conditions via 
redundancy and reconfiguration. 

 

1. INTRODUCTION 

Rapid propellant loading deals with transferring large 
amounts (~50,000 gallons) of cryogenic propellant from a 
storage tank to a vehicle tank.    The vehicle tank, though 
large, is relatively fragile. The vehicle designers have 
prescribed strict pressure limits for the tank and associated 
valves.  When the cold cryogen liquid first contacts the warm 
tank and connecting piping, it boils and vaporizes, generating 
large volumes of gas.  This translates to high flow rates and 
pressures.  For this reason, cryogen loading is generally done 
very slowly using a very structured sequence of events: 
chilling the cryogen pumps and associated transfer pipes, 
chilling the vehicle with cold gas, followed by small 
quantities of cryogen liquid,  slow filling of the vehicle with 
liquid to a predefined level,  fast filling the tank to near 
operating level, slowly topping off the tank to the maximum 
quantity and incremental replenishment of cryogen liquid that 
constantly boils off from the vehicle tank prior to launch. 

Normally, the process takes about 2-3 hours and a crew of 4 
to 8 engineers watches all the equipment on the ground and in 
the vehicle during this sequence.  The engineers are familiar 
with the physics of cryogenic liquid flow, the pressures and 
temperatures involved, typical faults that occur with 
temperature and flow measurements, stuck valves, faulty 
position indicators, high or low pressure measurements and 
occasional blown fuses and open circuit breakers.  They stand 
ready to diagnose problems and devise workarounds for 
faults to complete the loading process and launch the vehicle.   

The US Air Force would like to build some of the 
engineering expertise of the cryogen loading team into the 
computer system that controls the loading operation.  They 
would like to launch the rocket with a crew of three sergeant-
level personnel who may have no engineering experience and 
limited training in cryogen operations. To this end, the US 
Air Force Research Laboratory (AFRL) has funded a 
prototype project at NASA Kennedy Space Center (KSC) to 
explore rapid cryogenic propellant loading (RPL). The task 
has two primary goals:  

1. Reduce the entire loading operation time to 45 minutes 
(as opposed to the normal 2-3 hours). 

2. Develop software that automates the loading of the 
vehicle tank with cryogens with minimum operator 
supervision. 

The project is expected to proceed in three phases. In Phase I 
a small-scale hardware test bed will be built. Supporting 
software that performs passive diagnosis and some implicit 
fault accommodation and recovery will also be developed. 
Phase II will deal with building a larger scale hardware which 
would include fuel and oxidizer and perform automated 
umbilical mating and leak detection. Phase III would be a 
flight demonstration of the developed hardware and software. 

The software task of the Phase I project had the following 
objectives: 

1. Development of a preliminary cryogenic test 
configuration  



 
 

     

 

2. Development of use cases for the preliminary 
configuration 

3. Development of a simulation model of the 
preliminary cryogenic test configuration (a “mini-
model”) to conduct tests using the preliminary 
configuration and use cases 

4. Evaluation of the fault detection isolation and 
recovery (FDIR) application development tools 
using the mini-model and use cases 

5. Development of the RPL Control Architecture 
6. Update of the mini-model to the demonstration test 

bed simulation 
7. Testing of the selected Control Architecture with the 

demonstration test bed simulation. 
8. Integration of the Control Architecture with the 

actual cryogenic test bed hardware 
9. Testing of the Control Architecture with the 

cryogenic hardware 

Requirements 1-4 were completed and demonstrated to 
AFRL in December 2008. In this paper we describe the work 
that was done in completing the requirements, the setup for 
the demonstration and some representative scenarios and 
results.  

Our approach to solving this problem was to use model-based 
technologies where the models themselves would be 
component-based. The primary reason for this approach was 
that we would be testing diagnosis algorithms on different 
systems from the same domain (preliminary configuration, 
complete RPL configuration, actual hardware). Moreover the 
models were being built while the system configuration was 
being finalized. Hence component-based models would allow 
us to compose different system configurations by 
instantiating appropriate components and connecting them 
according to the system structure. This approach also allows 
us to tie anomalous behavior to component faults in a 
straightforward way.   

We selected MATLAB/Simulink® as the language of choice 
for the simulation model. To support requirement 4, it was 
decided to evaluate two model-based diagnosis technologies, 
namely, Hybrid Diagnosis Engine (HyDE) and Knowledge-
based Autonomous Test Engineer (KATE). These two 
technologies were chosen because of the availability of 
developers of the two systems. Other technologies may be 
considered in future years.  

The rest of the paper is organized as follows. Section 2 
describes the mini-model configuration and faults selected for 
testing based on use-cases analysis (Requirements 1 and 2). 
Section 3 describes the MATLAB/Simulink models with 
fault injection capabilities that were used to generate data for 
testing (Requirement 3). Section 4 describes HyDE and how 
models of the mini-model were built in HyDE. Section 5 
describes KATE and the efforts to create the mini-model 
configuration in KATE. Section 6 presents the experimental 
setup (which was exactly what was demonstrated) that was 
used to test HyDE and KATE on nominal and faulty data 

from the simulation and the results from a few representative 
scenarios. 

2. Mini-Model Configuration 

2.1 Preliminary Test Configuration 

Figure 1 presents the preliminary cryogenic test configuration 
(referred to as the mini-model) used for evaluating the model-
based diagnosis technologies.  The storage tank and vehicle 
tank both have vent valves (C3 and C4) to regulate the ullage 
pressure. Three transfer lines connect the tanks to regulate 
flow between. The main transfer line (top most) and the 
auxiliary transfer line (second from top) contain pumps that 
can be controlled to regulate the flows at various rates 
depending on pump RPM. Both lines contain manually 
operated valves (G1, G2), remotely operated valves (C1, C2) 
and flow control valves (A1, A2) to control the flow. The 
manually and remotely operated valves can be full open or 
full closed only, whereas the flow control valves can be 
controlled to be open to any desired percentage. A re-
circulation line (bottom most) controlled only by a flow 
control valve is used to send back excess liquid to the storage 
tank. The path to the vehicle tank is also controlled by a flow 
control valve to regulate the ratio of flow going to the vehicle 
tank and the flow re-circulating to the storage tank. 

2.2 Definition of Nominal Operation and Fault Scenarios 

Experienced propellant loading engineers stipulated the 
components and their capacity and likely scenarios for 
nominal loading operation satisfying the requirements put 
forth by AFRL. For the sake of the preliminary testing, we 
decided to ignore the chill down phase, assuming instead that 
all components were already ready for transferring cryogens. 
The stages of nominal operations were identified as (i) 
initialization (ii) slow fill (iii) fast fill (iv) topping (v) 
replenish and (iv) drain-back in the event of a launch scrub. It 
was assumed the system would follow this pre-determined 
sequence except when recovery actions required changes to 
the sequence.  

Engineers also specified likely sensor and component failures 
based on general knowledge about the components involved 
and also on prior experience with liquid oxygen loading for 
the Space Shuttle. The typical faults were identified as sensor 
(pressure and flow) failures, pump failures and valve (stuck 
open or stuck closed failures). Some other common failures 
involving power and data acquisition modules were not 
included for this initial configuration. 

Since we were using a simulation to generate data we had the 
flexibility of defining which values of the system could be 
sensed. Typical quantities like flows, pressures, valve 
positions and tank levels were included corresponding to 
typical measurement points in the actual hardware. Selected 
observation points are marked with white circles in Figure 1. 
We were able to take advantage of the flexibility to test the 
sensitivity of model-based diagnosis tools when faced with 
different sets of sensor observations. In the future, we hope to 



 
 

     

 

use this as a valuable tool to determine sensor placement and 
diagnosability. 

 

3. Matlab Simulation 

In order to evaluate our model-based diagnosis tools, we 
developed a simulation of the system. The simulation serves 
as a virtual test bed where we can easily study a large number 
of fault scenarios to develop our diagnosis models and test 
our algorithms. Clearly, if an accurate and realistic simulation 
is developed, then less work is required in migrating 
diagnosis algorithms to the actual system. 

To this end, we developed a physics-based simulation of the 
system in MATLAB/Simulink. We adopted a component-
based modeling paradigm, where parameterized simulation 
models of generic components including tanks, valves, pipes, 
pumps, and sensors were developed within a component 
library.  The overall system model is constructed by 
instantiating the different components from the component 
library, specifying their parameters, and connecting the 
components to each other in the appropriate fashion. The top 
level of the Simulink model which corresponds to the mini-
model schematic is illustrated in Figure 2. 

Each component model includes their associated fault modes. 
For example, a control valve may become stuck at a 
particular position, or its orifice may become partially 

blocked. The fault mode, time of fault injection, and fault 
magnitude (where applicable) can all be specified. In general, 
each fault mode is mapped to a change in component mode 
and a fault-dependent magnitude parameter. Because each 
fault mode is parameterized within the Simulink model, a 
fault can be injected programmatically (i.e., the fault mode, 
injection time, and magnitude are specified) either at the 
beginning of the simulation, or while the simulation is 
running. The component model of a valve with fault injection 
capabilities is shown in Figure 3. 

4. HyDE 

4.1 Description 

Hybrid Diagnosis Engine (HyDE) is a model-based reasoning 
engine for hybrid (discrete + continuous) diagnosis. HyDE is 
able to diagnose multiple discrete faults using consistency 
checking between prediction from hybrid models and sensor 
observations. HyDE models are component-based and are 
similar to simulation models. Component models are 
expressed in terms of behavior in different modes of 
operation (called locations) including faulty modes with 
transitions representing the conditions under which the 
system changes locations. The system model is composed by 
connecting shared variables between the various components. 
The HyDE reasoning engine uses the model both for 
simulation and candidate generation. A set of consistent 
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Figure 1: Mini-model configuration 



 
 

     

 

candidates, each of which may include multiple hypothesized 
faults, represents the diagnosis. At each time step the 
candidates are tested for consistency against sensor 
observations (using simulation) and if found inconsistent new 
candidates are generated (using candidate generation). For 
details please refer to (Narasimhan and Brownston 2007). 

4.2 HyDE Models of Mini-model Configuration 

The HyDE model for the mini-model configuration (Figure 
4) was constructed to look like the Simulink model described 
earlier. Each component and subsystem in the Simulink 
model is replicated in the HyDE model. Variables inside each 
component are also exactly the same as in the Simulink 

model. This also allowed the connections between 
components via shared variables to be duplicated in the 
HyDE model. The behavior within each component had to be 
modified so as to be represented as hybrid automata (finite 
state automata with equations in each state). This was done 
by identifying the modes of operation of the components 
including the fault modes based on fault injection 
capabilities. The equations within each mode can be 
determined by substituting appropriate parameter values 
corresponding to the different modes as specified in the 
MATLAB model. The HyDE model of a valve is illustrated 
in Figure 5. 

The reasoning parameters for HyDE had to be fine-tuned to 
provide the best performance. The fixed-step Runge-Kutta 
ODE solver was implemented to simulate behavior across 
time-steps. There were still some numerical problems since 
numerical precision used in MATLAB was far superior. As a 
result the tolerance for fault detection had to be increased (the 
default was 2%) for some observed variables. For fault 
isolation the maximum fault size was set to 3 (indicating a 
maximum of 3 faults in the system). The diagnostic results 
from HyDE are presented in Section 6. 

 
Figure 2: Simulink model of mini-model configuration 
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Figure 3: Valve component model with fault 

injection capabilities 
 

  
Figure 4: HyDE model of mini-model configuration 



 
 

     

 

5.  KATE 

5.1 Description 

KATE is a C++ model-based diagnosis system developed by 
NASA circa 1993 at Kennedy Space Center (Jamieson et al. 

1985, Scarl et al. 1987, Goodrich 1995).  It was developed to 
employ Fault Detection, Isolation and Recovery (FDIR) 
technology to deal with component faults during the Space 
Shuttle Countdown. 

 

The Shuttle's Launch Processing System (LPS) was 
programmed to sequence through normal operations and 
"hold" the countdown if unanticipated sensor readings are 
encountered.  KATE was developed to help Shuttle engineers 
decide whether such an exception is significant, diagnose the 
problem, and decide whether or not to continue the 
countdown. 

KATE is a generic software shell for performing model-
based FDIR.  Each KATE application requires a knowledge-
base or model of the system.  The same model-based 
reasoning algorithms are used for each application.  The main 
reasoning systems are: 

- Simulation - using a component-based model of a system, 
the simulation subsystem generates a prediction of behavior 
of the application system. 

- Monitoring - by comparing the predicted sensor values 
generated by the simulation subsystem with the actual sensor 
readings of the application system, the monitoring subsystem 

 
Figure 5: HyDE model of Valve component 

 

 
Figure 6: KATE in action for mini-model configuration 



 
 

     

 

is able to provide system health status. 

- Diagnosis - When a discrepancy between the predicted and 
actual sensor values is detected, the diagnosis subsystem 
exploits the structural and functional relationships of the 
components in the model to determine the failed 
component(s) that would explain the discrepancy. 

5.2 KATE models of mini-model configuration 

The KATE model for the mini-model configuration was built 
by identifying all the components in the mini-model and 
considering their likely failure modes.  The components 
include propellant tanks, pumps, valves and sensors. The 
mini-model uses component behavior defined for the Space 
Shuttle' KATE LOX application developed in 1986 and 
refined in 1994.  Additional component models were used 
from a USAF Advanced Launch Operations demonstration 
developed in 1993.  KATE's mini-model was constructed by 
defining connections between components selected from 
these pre-existing libraries.  Some modifications of the C++ 
code in the libraries were made to account for the parallel 
pumping defined in the mini-model. 

The resulting "flat file" model simply specified mini-model 
components from the libraries and connections between the 
components.  KATE was able to diagnose faults by reading 
data generated by the Matlab simulation. The diagnostic 
results from KATE are presented in the next section. 

6. Experimental Setup, Demo and Scenarios 

In order to demonstrate the simulation and diagnosis 
capabilities we created command line and visual interfaces. 
Using the command line interface, the user can specify an 
experiment, parameterized by a set of faults to inject, the 

amount of noise for each sensor, and the sample time of the 
sensors. The simulation is then automatically executed with 
these parameters, and the resulting input and output data is 
written to files for input to the diagnostic tools. Currently we 
support the creation of data files recognized by HyDE and 
KATE tools.  

The visual interface, a GUI in MATLAB, provides an 
overview schematic of the mini-model configuration and 
allows the user to setup the experiment. The GUI is linked to 
the Simulink model. It sends the user specified parameters to 
Simulink and runs the simulation for the specified time. All 
input and output values are updated on the GUI as the 
simulation progresses. The user can also change the inputs 
online to recover from failures, and click on any variable in 
the GUI to see a time series plot. Figure 7 shows the GUI in 
action. 

In addition, we have also implemented an interface from the 
GUI/Simulink to HyDE. This was achieved by creating a 
MEX function in C++ that acts as the interface. The MEX 
function, which is linked to HyDE static library, creates an 
instance of HyDE, loads the appropriate model and 
configuration parameters into HyDE and then executes HyDE 
API functions in step with the simulation. Command and 
sensor data from the simulation is sent to HyDE at each time 
step. The diagnosis candidates from HyDE are listed in the 
GUI (lower left side). When the user clicks on each 
candidate, faulty components are colored red in the schematic 
to provide a visual indication.  

Due to lack of time, an interface between the GUI and KATE 
was not created. We chose instead to exercise KATE using 
the data files generated (either using the command line 
interface or the GUI). 

 
Figure 7: GUI used in demonstration 



 
 

     

 

We present and discuss results from 4 scenarios. These were 
the same 4 scenarios used in the demonstration. The nominal 
operational sequence was selected to mimic the stages of a 
realistic cryogenic propellant loading. The first scenario was 
the complete nominal scenario with the goal of validating the 
realism of the simulated data. Three fault scenarios were 
selected based on use case analysis that determined some 
common failures (discussed in Section 2). Note that HyDE 
did not use the valve position sensors in any of the scenarios. 

The first fault scenario was a flow control valve (A1) stuck 
open during the slow fill stage (at 300 s). The flow control 
valves can be controlled on a continuous scale from 0 to 1 to 
regulate the flow. There is a flow control valve in the main 
and auxiliary lines and in the common discharge line leading 
to the vehicle tank (Figure 1). When one of these valves is 
stuck open it is necessary to regulate the flow in that line 
using other means. HyDE and KATE are able to diagnose 
this situation right after observations for time 300 s are 
available. We determined that the recovery action for this 
fault was to regulate the flow by decreasing the Pump 1 speed 
to 275 RPM during slow fill to achieve the required net flow 
to the vehicle tank. Figure 8 shows the profiles of some key 
measurements for this scenario. 

The second fault scenario was a vent valve failure (stuck 
closed). The operation of this valve is modeled as an 
autonomous mode change (is not externally commanded). Its 
nominal behavior is to regulate the ullage pressure of the 
vehicle tank between 2 and 7 psig. Because the state of the 
valve is not directly commanded, this adds a level of 
difficulty to the reasoning process. Further, this was a critical 
fault scenario because if nothing was done, then the ullage 
pressure in the tank would keep increasing, resulting in 
catastrophic failure. The other interesting feature of this 
failure is that it can only be detected when the vent valve is 
predicted to be in open state since the behavior when the 
valve is in the closed state and the stuck closed state is 
identical. The scenario chosen failed the valve when it is in 
the closed state (1100 s). At 1254 s, the ullage pressure (P7) 
exceeds 7 psig, and the valve should have closed. At this 
point, HyDE and KATE are able to diagnose that the valve is 
stuck closed, although they cannot determine the time at 
which the failure occurred since it may have occurred at any 
time during which the valve was in the closed state. In this 
situation, the system is unsafe and loading operations must be 
aborted. Therefore, the recovery action is to drain the 
propellant back from the vehicle tank to the storage tank by 
shutting down the pumps and opening up all the valves. 
Figure 9 illustrates the profiles of some key measurements in 
this scenario. 

The third fault scenario was a double fault case where a pump 
(Pump 1) and a down stream flow sensor (F1) failed. Only 
HyDE was run on this scenario since KATE currently does 
not support multiple fault diagnosis. Additionally, we also 
decided to use only flow sensors to demonstrate the sensor 
fusion capabilities of HyDE when limited sensing is 
available. When the pump in the main transfer line fails, it is 
expected that the flow sensor in the main transfer line would 
indicate this failure. However, if the flow sensor has failed, it 

is necessary to use other sensors (namely flow sensors in the 
auxiliary transfer line and the vehicle tank subsystem) to 
diagnose the pump failure. HyDE is able to do exactly that 
albeit taking a couple of time-steps since the effects on the 
other flow sensors is not immediately seen. The recovery 
action for this situation was determined to be increasing the 
pump RPM in the auxiliary transfer line to 375 RPM and 
opening up the flow control valve in that line completely, in 
order to regain the nominal flow into the vehicle tank. Figure 
10 shows the profiles of some key measurements for this 
scenario. 

Although we presented only three fault scenarios, we tested 
HyDE and KATE extensively by varying the number of 
faults injected (only single faults for KATE), the time at 
which the faults are injected, the sensor noise, and which 
sensor observations were available to the diagnosis engines. 
The engines were able to diagnose the true faults in more 
than 99% of the cases. 

6. Conclusions and Future Work 

In this paper we presented an application of model-based 
simulation and diagnosis work to a scaled-down version of a 
rapid propellant loading system. We demonstrated the 
detection and isolation of some common failure scenarios. In 
the process we also developed a component-based simulation 
in MATLAB and showed its usefulness in testing and 
evaluating FDIR applications.  

The next steps in the project involve the completion of 
requirements 5-9 detailed in the introduction. We are in the 
process of developing a software architecture based on the 
Internet Communication Engine (ICE) (Henning 2004) to 
support requirement 5. ICE uses a “publish-subscribe” 
protocol for communication. In the architecture which was 
adopted from the Advance Diagnostics and Prognostics Test 
bed (ADAPT) (Poll et al. 2007), the MATLAB simulation 
will subscribe to the user inputs (including commands) and 
publish sensor data. The operation of the simulation is similar 
to the Virtual ADAPT simulation. HyDE and KATE will 
subscribe to the user inputs and sensor data and publish 
diagnosis results. The MATLAB model is being updated to 
reflect the hardware test bed being constructed (requirement 
6). HyDE and KATE models will be built for the new 
configuration and a demonstration of the results is scheduled 
for late April 2009 (requirement 7). When the test bed 
hardware has been built, the control architecture can be easily 
modified by replacing the MATLAB simulation with the 
LABVIEW module performing the data acquisition on the 
hardware (requirement 8). HyDE and KATE models can then 
be tested against data generated from the actual hardware 
(requirement 9). 

Phase II of the project would deal with the implementation of 
automated synthesis of recovery actions based on the current 
state of the system. This may have to be interleaved with the 
diagnosis process for 2 reasons: (i) the diagnosis engine 
frequently reports ambiguities and recovery actions may have 
to be taken to avoid catastrophic effects of any faults 
reported, if time is taken to wait for further disambiguation 



 
 

     

 

(ii) in some cases recovery actions may be used to provide 
information helpful in disambiguating faults. 
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Figure 8: Fault Scenario 1 with stuck control valve 
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Figure 9: Fault Scenario 2 with stuck vent valve 
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Figure 10: Fault Scenario 3 with double fault 

 



 
 

     

 

E.A. Scarl, J.R. Jamieson, and C.I. Delaune, 1987. Diagnosis 
and Sensor Validation through Knowledge of Structure 
and Function, IEEE-Transactions on Systems, 
Man, and Cybernetics, SMC-17, No. 3, May/June 
1987. 

Goodrich, Charles, 1995, “A Method for Diagnosing Time 
Dependent Faults using Model-Based Reasoning 
Systems”, FLAIRS (Florida AI Research 
Symposium) 

Henning, M. (2004), A New Approach to Object-Oriented 
Middleware. IEEE Internet Computing, Vol. 8, 
Issue: 1, pp. 66-75. 

Poll S., Patterson-Hine A., Roychoudhury I., Daigle M., 
Biswas G., et al. (2007), Evaluation, Selection, and 
Application of Model-based Diagnosis Tools and 
Approaches. AIAA-2007-2941. AIAA 
Infotech@Aerospace 2007, Rohnert Park, CA, May 
7-10, 2007

 


